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We consider a semi-infinite (bounded above) plane-parallel layer of barotropic fluid in 
a constant gravitational field. We present a proof that flows of such a fluid cannot be 
time-independent in a reference frame wherein the flow’s velocity field falls off 
asymptotically faster than the inverse of the radial distance, R. This includes all flows 
of finite kinetic energy as such flows must fall off faster than R-1.5. The unsteadiness 
is due in part to the dynamical expansion of a compressible fluid in motion; this 
expansion leads to a density deficit so that in the presence of gravity the flow rises 
buoyantly and cannot be steady in time. The non-existence of certain classes of steady 
uniform-fluid flows is also discussed. 

1. Introduction 
Parker (1991) has recently pointed out that a barotropic fluid spinning in a vortical 

flow will exhibit a density deficit as compared to the ambient fluid outside the vortex. 
This deficit occurs because the centrifugal force on the spinning fluid reduces the 
pressure, and hence the density, of the fluid within the vortex. In the presence of a 
gravitational field, the resulting ‘ dynamical buoyancy ’ force will play a significant role 
in the dynamics of flows. For example, one would expect convection in a gravitationally 
stratified fluid (as in the sun) to be strongly influenced by this buoyancy force. 

In a previous investigation, Arendt (1993a) studied the effect of the dynamical 
buoyancy on horizontal vortex tubes in a vertical gravitational field; the tubes were 
constructed by nesting a positive vorticity core inside a negative vorticity shell. It was 
shown that, in general, the positive vorticity core becomes displaced horizontally from 
its initial location, resulting in a vertical motion of the entire vortex tube through a 
dipole-like interaction between the core and shell. Surprisingly, while in all cases the 
dynamical buoyancy force is directed upward, the vertical motion of the tube can be 
either upward or downward, depending on the details of the vorticity distribution. If, 
however, the tube is constructed so as to have no initial outside velocity field, its 
motion is always upward. 

This last fact is readily understood. If a flow is strictly confined, by which we mean 
that the flow velocity is non-zero only inside some closed region, then there are no 
forces to counter the upward dynamical buoyancy force and the volume containing the 
flow must rise. This leads one to suspect that there exist no steady strictly confined 
flows of a barotropic fluid in a gravitational field. Such a strictly confined flow would 
be buoyant, would rise, and would hence not be steady in time. In $2 we prove this 
assertion and in so doing remove two approximations used in the work of both Parker 
and Arendt. The first of these is that the flow size is small compared to the local density 
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scale height, and the second is that the pressure and density variations caused by the 
flow are small compared to those caused by gravity. 

To put this result into context, we note that steady strictly confined flows of uniform 
fluids do exist. In fact, in two dimensions, any circularly symmetric vortex having zero 
net circulation is confined and steady. Similarly, in three dimensions, confined and 
steady solutions are known to exist (Prendergast 1956; Moffat 1969; Low 1994). It is 
thus rather remarkable that such flows do not exist for a stratified barotropic fluid. 

In $3, we relax the strict-confinement condition, requiring instead that the flow be 
asymptotically confined in the sense that the flow velocity vanishes at infinity. Taking 
a plane-parallel fluid layer with an upper boundary, we show by an extension of the 
proof in 92 that if the flow velocity falls off faster than R-l and if o-ri = 0 along the 
upper surface of the fluid layer, then the flow cannot be steady. 

Before proceeding, we wish to clarify what is meant by a steady confined flow. We 
will call a flow steady and confined if it is not time-dependent in the frame of reference 
wherein the flow is confined (either strictly or asymptotically). Thus, for instance, Hill's 
vortex would not be confined and steady under our definition because in the reference 
frame in which its flow asymptotically vanishes, it is not steady; Hill's vortex is only 
steady in a frame in which its flow field asymptotically approaches a constant, that 
constant being the vortex's propagation velocity. Such uniformly propagating steady 
flows in a barotropic stratified fluid are not disallowed by the present proof. Indeed, 
such solutions have previously been constructed (Arendt 1993 c). 

2. Strictly confined flows 
In this section, we consider strictly confined steady barotropic flows in a uniform 

gravitational field. By strictly confined we mean that the flow velocity is non-zero only 
inside a closed finite volume V embedded in an otherwise stationary body of fluid. On 
a V, the surface of V, we require that us ri = 0, where ii is the unit normal to the surface, 
and also that the fluid pressure be continuous. The fluid is first taken to be a barotrope 
of the form P = CpY with y 2 1, but the proof is then shown to apply to any barotrope 
P = h(p) with d2h/dp2 2 0. 

We begin with the steady-state equations for an inviscid fluid in a uniform 
gravitational field 

V . p u  = 0, (2-1) 
p(u.V)u = -VP-pgz". (2.2) 

We will demonstrate that the only solution satisfying the aforementioned boundary 
conditions is the trivial one: u = 0. 

Consider first the region outside the flow volume. Denoting the pressure and density 
there by P, and p, respectively, (2.2) gives the hydrostatic law 

-VP,-p,gz" = 0. (2.3) 
Using the barotropic relation P = CpY, we rewrite (2.3) to be 

Note that since g > 0, we have dp,/dz < 0. 
Now, inside the flow region introduce the notation 

P = P,+AP, 

P = P,+AP, 
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so that AP and Ap are the pressure and density disturbances due to the flow; we do not 
assume that Ap and AP are small. Substituting these into (2.2) and using (2.4) to replace 
g ,  we find 

~ ( u . V ) U = - V ( A P ) + A ~  2, (2 2 )  
where we have used (2.3) in writing (2.7). Multiplying the z-component of (2.7) by pi' 
yields 

which gives, upon rewriting, 

Now, note that the barotropic relation P = CpY can be rewritten as 

--=(1+$) AP Y -1. 

PO 
(2.10) 

Substituting this into (2.9), we find 

Integrating (2.11) over the flow volume V and using the boundary conditions to 
eliminate the surface integrals, we find 

(2.12) 

We now proceed to show that the term in square brackets, which we denote by F, is 
positive definite for y > 1. First, the physically allowed range of Ap/po is from - 1 to 
00. Considering F to be a function of Ap/po,  we find that F = 0 and dF/d(Ap/p,) = 0 
at Ap/po = 0. This is the only zero of the derivative of F within the allowed range of 
Ap/po,  so F always has the same sign. To determine this sign, consider the point 
Ap/po = - 1 at which F = y-  1. We conclude that F 2 0 everywhere for y 3 1 and 
F < 0 everywhere for y < 1. 

Restricting our attention to the case y > 1, we see that the integral in (2.12) is 
negative definite (recall dpo/dz < 0). The only possible solution is then 

u, = 0, (2.13) 

Ap = AP = 0. (2.14) 

Having AP = 0, it is an easy matter to multiply the 9-component of (2.7) by x and 
integrate it over V to find 

lvpu;dV= 0, (2.15) 

so that u, = 0. (2.16) 

Similar treatment of the jkomponent yields 

uy = 0. (2.17) 
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We conclude that there are no steady confined flows of a barotropic fluid (with y 2 1) 
in a uniform gravitational field. 

It is straightforward to show that this proof holds for any barotropic relation 
P = h(p) with dh/dp > 0 and d2h/dp2 2 0 everywhere. In this case the function in 
square brackets in (2.12) becomes 

(2.18) 

To show that F is a positive definite, we begin by differentiating F with respect to Ap: 

Since d2h(p)/dp2 > O,dF/dAp is only zero at Ap = 0. The function F is also zero at 
Ap = 0 so that F is of the same sign everywhere. To determine this sign, take the second 
derivative of F to obtain, at Ap = 0, 

(2.20) 

which is always greater than or equal to zero, by our assumption. Therefore, F > 0 
everywhere and the proof that u = 0 follows as before. 

The curious restriction d2h/dp2 2 0 deserves some comment. First note that if the 
flow is sufficiently slow, then Ap 4 po and A P  4 P, so that the term in square brackets 
in (2.12) vanishes up to first order. The resulting integral is then positive definite, 
regardless of the properties of the barotropic relation. It is thus only for flows of higher 
velocities that this restriction obtains. 

If we take the barotrope to be an isentrope, then the restriction becomes 
(d2P/dp2)s 2 0, where S is the entropy; this inequality is of some interest in the theory 
of shock waves. It is known that fluids normally obey the above inequality, the 
exception being in some region around a gas-liquid critical point (Zel’dovich & Raizer 
1968). 

3. Asymptotically confined flows 
In this section, we relax the strict-confinement conditions and instead suppose that 

the flow is asymptotically confined, by which we mean that the flow velocity vanishes 
as one approaches infinity. We will show that a flow cannot be steady if the flow 
velocity vanishes at infinity faster than Rpl ,  R being the radial distance from the origin. 
The fluid is taken to be a plane-parallel layer with an upper surface and a constant 
gravitational field; the upper surface is required since the pressure of a barotropic fluid 
stratified by gravity in general becomes complex-valued at some height; an upper 
boundary below this height avoids this. An exception is an isothermal fluid which had 
a positive pressure everywhere. The surface can be either a free boundary upon which 
the pressure is constant or a rigid impenetrable boundary. We will enforce the 
condition u-A = 0, where A is the unit normal to the surface, and also the condition 
c0.A = 0, implying that no vortex lines end on the upper surface. 

The proof proceeds in the same fashion as in the previous section, the difference 
being that the surface integrals obtained from integrating (2.11) require some 
consideration. To proceed, integrate (2.1 1) over the entire fluid region by employing a 
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hemispherical volume (with the rounded part below and the upper surface 
corresponding with the upper boundary of the fluid layer) extending out to R + 00. We 
find 

We split the surface S into two pieces: S,  and S,, where S, is the upper boundary of 
the fluid layer and S,  is a hemispherical surface extending out to R+ co. 

Consider the integration over S,, assuming that u falls off with distance. As R+ 00, 
we have p+po, so that puuz/po = uu,. The surface integral of this quantity is zero if 
u + 0 faster than Rpl in three dimensions and R-i in two dimensions. Furthermore, if 
the velocity falls off this fast then it is straightforward to see from Euler's equation that 
AP/p, drops off faster than R-, in three dimensions and R-' in two dimensions so that 
its integral over S,  is also zero. To avoid tedious repetition, we quote only the three- 
dimensional result in the rest of the paper. Equation (3.1) then becomes, after enforcing 
u. f l=  0 on S,, 

In the previous section we have shown that the volume integral above is negative 
definite. We now proceed to show that the surface integral is also negative definite. This 
arises essentially from Bernoulli's theorem employed along the upper boundary. To 
begin, write Euler's equation (2.2) as follows : 

where 

V P  v - +o x u  = ---gt = -V(f(p)-f(p,)) ,  (3 P 

1 dh 

(3.3) 

(3.4) 

and P = h(p). We have used (2.3) in writing (3.3). Now, if w-ri  = 0 and u-fi = 0 on S,,  
then w x u has no component tangential to S,, and we can integrate (3.3) along the 
surface to obtain 

The constant is found to be identically zero from the fact that u+O and AP+O as 
R+ 00 along the upper boundary. We then have 

(3.6) 

(3.7) 

;u2 + (f(p) -f(p,)) = constant. (3.5) 

w + f ( P )  -f( Po> = 0 

f ( P ,  + AP) - f (P, )  G 0. on S,. This gives 

Now, df/dp = (l/p)dP/dp > 0, so that (3.7) implies that A p  < 0 and hence AP < 0. 
Using the additional fact that f . d S  > 0, we conclude that the surface integral in (3.2) 
is negative definite. Hence the entire expression in (3.2) is negative definite and we must 
have 

u, = 0, (3.8) 

(3.9) AP = Ap = 0. 

Having these, the equations for u, and uy are 

( u - V ) u  = 0, 
v . u  = 0. 

(3.10) 

(3.11) 



346 S .  Arendt 

The only solutions to these equations are flows with straight streamlines extending to 
infinity along which the flow velocity is constant. Since we have already excluded flows 
not vanishing at infinity, we exclude these solutions. Hence, 

u, = uy = 0, (3.12) 
and our proof is complete. 

In the proof, we required that u.ii = 0 on the surface of the fluid layer in order to 
demonstrate that the pressure was negative everywhere on the surface. It is unclear if 
the theorem holds for the case where o - ii =I= 0 on the surface. 

Throughout the proof, we have not specified the complete nature of the boundary 
conditions on the upper boundary, but rather only that u- i i  = 0 and w- i i  = 0 there. 
The final result holds for a free boundary upon which the pressure is constant or a rigid 
impenetrable boundary. Furthermore, one could add vertical impenetrable sidewalls 
instead of enforcing the asymptotic decay of the flow. The proof is unaffected if 
0.4 = 0 on the sidewalls, a condition that is required for the evaluation of the constant 
in the Bernoulli equation (3.5). 

In fact, only the imposition of a lower boundary surface on the fluid will affect the 
proof, since such a boundary surface S, will introduce an additional surface integral 
onto the left-hand side of (3.2): 

(3.13) 

Using the Bernoulli theorem (3.6) to show that AP < 0 (if c u - i i  = 0 on S3),  as well as 
the fact that f - d S  < 0, we find that the above integral is positive definite. Thus, if the 
magnitude of this integral can be made to match the magnitude of the sum of integrals 
in (3.2), then a steady flow may exist. However, if the flow is sufficiently weak at the 
lower boundary so that this integral cannot balance the others in (3.2), then a steady 
flow cannot be achieved. As a special case, for a flow slow enough so that AP 4 Po 
everywhere, it can be shown thatf(p)--f(p,) z A P / p ,  so that (3.2) becomes 

(3.14) 

again under the assumption that o-ii = 0 at the boundaries. We see that in order for 
the flow to be steady, the flow velocity at the bottom of the fluid layer must in general 
be larger than that on the top of the layer. 

It has been mentioned that flows which translate steadily in time exist. To see how 
these evade the present theorem, consider writing (3.1) in the translating reference 
frame. In this frame, the total velocity field u may be written as u = u- U where U, 
the velocity of translation, has no component in the 2-direction. If the velocity u drops 
off faster than R-2 (as would be the case if the flow had, for example, strictly confined 
vorticity), then AP drops off faster than RP2 and the surface integral over S, still 
vanishes. After enforcing the boundary condition u- i i  = 0 on the upper boundary S ,  
of the fluid layer, we are left again with equation (3.2). The Bernoulli theorem in (3.6) 
becomes 

;uz +fb) - f (P, )  = ;uz, (3.15) 

where U is the velocity of translation. Assuming for the present discussion that 
AP 4 Po, we expandf(p)-f(pJ in (3.15) to find 

$ 2 + A P / p o  = ;U2, (3.16) 
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so that (3.2) gives lv:( - g ) d V =  ~ s l ~ ( U z - u z ) d S .  (3.17) 

A steady flow may exist if the integral on the right-hand side is of the same magnitude 
as that on the left-hand side. 

4. Discussion 
In this paper we first presented a proof that strictly confined flows (i.e. flows non- 

zero only in a finite volume within an otherwise static fluid layer) of a barotropic fluid 
in a gravitational field cannot be time-independent. In so doing, we removed 
restrictions used in previous work, most notably the assumption of a flow region small 
compared to the local density scale height. The non-existence may be attributed to the 
dynamical expansion of fluid within a flow, although this physical mechanism has been 
obscured in the proof. The expansion leads to a density deficit so that in the presence 
of a gravitational field, the buoyant fluid rises and a steady state cannot be achieved. 

The proof was then extended to include asymptotically confined flows whose velocity 
fields drop off faster than R-l. In this case, it was necessary to assume 0-fi = 0 on the 
surface of the fluid layer so that the excess surface pressure could be shown to be 
negative; it is unclear if this restriction is essential to the non-existence result. We may 
ask whether the unsteadiness of asymptotically confined flows is due to the dynamical 
buoyancy force or to the presence of an upper surface to the fluid layer. One clue is 
found from the case of an isothermal fluid which requires no upper boundary; there 
the unsteady nature of the flow may be unambiguously attributed to the dynamical 
buoyancy force, leading us to believe that for a more general barotrope having an 
upper surface, the dynamical buoyancy force contributes to the flow’s unsteadiness. On 
the other hand, we will in a moment discuss applications to unsteady uniform-fluid 
flows in the presence of a rigid wall. In that case there is no gravitational field and hence 
no dynamical buoyancy force so that the unsteadiness of those flows is completely 
attributable to the presence of a wall on which u-fi = 0 and o-fi = 0. 

In fact, both mechanisms contribute in general. To see this, consider the total vertical 
force balance on an asymptotically confined flow with a rigid upper surface. To begin, 
there are the excess external pressure forces acting on the flow. The excess pressure 
from above is negative owing to Bernoulli’s theorem along the surface of the fluid 
layer, and the excess pressure from below is zero because the flow is required to 
asymptotically come to rest. Thus, the flow has a total upward force on it and is already 
out of force balance, even before we consider the buoyancy force which only 
exacerbates the situation by adding an additional upward force. Hence, either 
mechanism alone will cause the flow to be time-dependent, but in general they act in 
concert. 

It appears that there are two crucial features to this non-existence result, the first 
being the lack of a lower boundary on the fluid. As discussed above, simple force 
balance for a steady flow demands that the excess buoyancy of the flow be offset by an 
enhanced external pressure force pushing down. The upper boundary alone is 
incapable of supplying such a force, but if a lower boundary is present, then the 
dynamical buoyancy of the flow might be balanced by a difference in the excess 
pressure forces applied to the upper and lower boundaries. Again, each excess pressure 
must be negative by Bernoulli’s theorem (assuming 0-fi = 0 on each boundary), but 
the difference between the two can be of either sign. Hence steady flows with lower 
boundaries may exist. 
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The second crucial feature is the use of a barotrope, which essentially forces the 
pressure deficit of a flow to appear as a density deficit, rather than a temperature deficit, 
and leads to the ‘dynamical buoyancy’ force. It is possible that confined steady flows 
of a non-barotropic fluid might exist; the removal of the barotropic restriction removes 
to an extent the coupling between pressure and density, so that a reduction in pressure 
could result in a reduction in temperature rather than density. If the total vertical force 
acting on a flow can be reduced to zero, then a steady state might be achieved. In any 
case, the results of the present paper suggest that the balance, if achieved, would be 
delicate. It should be noted that such a flow would be required to satisfy an energy 
conservation equation in conjunction with the momentum and mass conservation 
equations. 

It is a remarkable fact that a flow with a velocity falling off faster than R-l in a 
stratified barotropic fluid cannot be in a steady state. This rate of asymptotic decay is 
not a severe restriction. For perspective, consider the kinetic energy of a flow: E, = 
iJpu2 dV. In order for this to be finite, the flow velocity must asymptotically approach 
zero as R +- co. For a uniform fluid, the flow velocity must go faster than RP1.’, while 
for a stratified fluid it must go faster still since the density increases with depth. As this 
asymptotic behaviour obeys the conditions of the theorem of $3, we conclude that 
flows of finite kinetic energy in a barotropic stratified fluid without a lower boundary 
cannot be steady (in the frame of reference wherein they are confined); the only flows 
of finite kinetic energy which can be steady are those which translate transverse to 
gravity at a steady rate, as do stratified-fluid vortex tubes (Arendt 1993 c). This result 
may be rephrased as follows, keeping in mind our choice of reference frame and the 

restriction of finite total kinetic energy: the kinetic energy distribution of a barotropic 
stratified-fluid flow cannot be time-independent. 

Consider the application of the theorem to steady vorticity distributions. The flow 
surrounding a strictly confined vortex (here, the vorticity is meant to be strictly 
confined, not the flow velocity) in a uniform fluid in three dimensions drops off as R-3, 
while in a stratified isothermal fluid or y = polytrope, it falls off at least that fast and 
sometimes faster, depending on the orientation of the vortex with respect to gravity 
(Arendt 1993b). We may suppose the rapid fall-off of flow velocity outside an isolated 
vortex to be a general feature true for any barotrope. The theorem of $3 then has the 
immediate consequence that any strictly confined vorticity distribution in a stratified 
barotropic fluid cannot be steady state in the frame in which its flow drops off 
asymptotically. 

Consider next the consequences of these results for steady stratified-fluid convection. 
Of course, a convecting fluid cannot be strictly barotropic, but if the departures from 
a barotrope are supposed small, we may apply the results of the present paper. Take, 
then, a convection pattern divisible into cells on whose surfaces u-ri = 0 and o-fi = 0, 
and assume that these cells have vertical sides. (It is straightforward to extend the 
following discussion to cells having non-vertical sides.) We may equivalently consider 
one of the cells confined to a column of unvarying cross-section by rigid impenetrable 
walls. The results of the present paper apply, and we conclude that the flow cannot be 
steady unless a lower boundary is present and (if AP < Po) the lower-boundary surface 
integral in (3.14) is large enough in magnitude to balance the sum of the other integrals 
in (3.14). This can occur only if the flow velocity at the bottom of the cell is larger than 
that at the top. In connection with this, it is interesting to note the numerical 
convection simulations of Hurlburt, Toomre & Massaguer (1984). Their two- 
dimensional box has stress-free upper and lower boundaries and periodic sidewalls ; 
their examples of steady flow form cells on whose boundaries u.A = 0. These 
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conditions fulfil the requirements leading to (3.14). In the solutions for steady 
convection (figures 4 a  and 5a of Hurlburt et a/.), one finds that the flow velocities on 
the upper and lower boundaries are comparable. 

As a specific example, consider the solar granulation. Numerical simulations 
(Cattaneo et a/. 1992; Stein & Nordlund 1989) suggest that granules only appear near 
the surface of the convection zone of the sun; beneath the layer of granules is a general 
gentle updraught punctured by occasional thin fast downdraughts. If we consider the 
granules to be a layer of convective cells lying upon an almost stationary body of fluid, 
then the theorem of the present paper implies that such a layer of convection cells 
cannot be steady since it has no lower boundary. Indeed, observations show that 
granules are strongly time-dependent, varying on timescales comparable to their 
turnover time (Bray, Loughhead & Durrant 1984). This application of the theorem 
must be regarded with some caution owing to the non-barotropic nature of the 
convection and the presence of turbulence beneath and within the layer of granules. 

Finally, we point out that the proof in this paper can also be applied to certain 
classes of steady confined flows of a unform-density fluid. To begin, we note that if the 
fluid is assumed to be uniform, then all that remains in (3.2) is the surface integral of 
pressure over the upper boundary of the fluid. Since this integral is negative definite if 
o . A  = 0 and 2-n > 0 on the boundary, we immediately conclude that no steady 
asymptotically confined (with u falling off faster than R-l) uniform-fluid flows exist in 
the presence of a rigid wall. In terms of vortex dynamics, no strictly confined vorticity 
distribution can be steady in the presence of a rigid wall in the reference frame wherein 
its flow field is asymptotically confined. Finally, it has previously been noted (Arendt 
1993 a) that the equations governing steady axisymmetric uniform-fluid flow having 
only toroidal vorticity (o = w$) are equivalent to those governing a y = 2 barotropic 
fluid in two dimensions. Thus, no steady and confined (strictly, or asymptotically with 
a rate faster than R-i) axisymmetric flows having only toroidal vorticity exist in a 
uniform fluid. As an example, no uniform-fluid vortex ring (without helicity) can be 
constructed which is confined and steady (i.e. does not propagate). For perspective, a 
steady strictly confined axisymmetric flow with helicity is known (Prendergast 1956 ; 
Moffatt 1969; Low 1994). 

It is a pleasure to thank E. N. Parker, T. J. Bogdan, B. C. Low, I. Lerche, and P. 
Fox for many profitable discussions, as well as an anonymous referee for helpful 
suggestions. 
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